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SUMMARY 
Solutions of the chemical species' conservation equations are shown to involve two small parameters and to give rise to 
singular perturbation problems. General results are derived for arbitrary flame geometry and a criterion for the 
retention in a solution of both parameters is established. 

1. Introduction 

The relation which expresses conservation of mass of the reactant species (F, fuel and K, 
oxidant) in a combustiblemixture can be written in the form 

~VX vF s = -- (/)/T) {Cx CF --(I--r ~ = X , F  (1) 

where the variables (all dimensionless) have the following meanings; p is the density, G is the 
mass fraction of species ~, z is the characteristic reaction time, u is the flow velocity vector, 

is the diffusion coefficient and the v~ quantities (a =X,  F, P) are the stoichiometric integers in 
the reaction equation 

v v F + Vx X ~ Vp P. (2) 

P is the product species, 7~ is defined so that 

= c/v  G ,  (3) 

where W~ is the molecular weight of species ~, 6 is the equilibrium constant for the reaction and 
is the ratio of a typical (dimensional) reaction time to a typical (also dimensional) diffusion 

time. The gradient operator is denoted by V. 
The combustion situation is distinguished by the much greater availability of energy states 

to the F and X reactants when they are combined in a P molecule (provided that the tempera- 
tures are not excessively high) and accordingly we may take it that 

~ 1 .  

By hypothesis, any situation which is diffusion-controlled must have 

e ~ l .  

It follows that this theoretical model of a diffusion flame is characterised by the appearance of 
two small parameters, at least as far as the species conservation equation is concerned. The 
remaining conservation equations will evidently introduce other parameters, like the Reynolds 
number, Prandtl number, and so on, but it will not be necessary here to become directly invol- 
ved with any of these other aspects of the flow system. 

It is, indeed, a primary purpose of this account of the diffusion flame to show how much can 
be learnt from equation (1) alone by making use of singular perturbation theory. Actual 
combustion situations have more complicated kinetics than (2) and must involve multi- 
component diffusion (equation (1) embodies a Fick's-law description of the mass diffusion 
processes) and these matters have been considered in previous articles [1, 2, 3, 4, 5]. The 
present simplified model illustrates some of the foundations on which these theories have been 
constructed and hence may be of some pedagogical interest. Of course such a simple model has 
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already been used by a number of authors [6, 7, 8, 9, 10, 11] but, just as with the previous 
references, always in the context of a specific geometry. The role played by flame geometry will 
be shown here by analysing a very general situation. This general approach also provides an 
opportunity to display matched asymptotic expansion [-see e.g. 12] theory applied to a problem 
with two small parameters. The solutions of (1) are singular in the limit when both e and 6 
vanish, but overall regularity can be restored by resurrecting e as a small non-vanishing 
parameter while keeping 6 zero, or vice versa ; the solutions are quite different in each case. A 
criterion for retention of both parameters emerges from the analysis, which is of some additional 
interest in that location of the region of non-uniformity in the limit is not known a priori. 

Although it may not be possible to do so in all cases [see e.g. 4, 10] it helps in present circum- 
stances to treat p, 9 ,  z and u as given functions of position. Then solutions of (1) are required 
in a domain D, subject to a requirement of continuity of Ta (for physical reasons) and to suitably 
imposed boundary value data. Evidently (1) is a partial differential equation of elliptic type 
(the highest order derivatives appear in the form - 8 p ~ V  2 7 a ,  where V 2 is the Laplacian opera- 
tor) so that such data is required everywhere on the boundary 0D ofD ; it may be of mixed form 
in the sense, for example, that ?a may be given on part of 0D while its normal derivative is then 
given on the remainder. 

Before proceeding it is important to note that subtraction of equation (1) with c~ = F from 
(1) with ~ = X  gives 

V .  {pu (Tx - 7v) - p~V (Tx-  ?V)} = 0 ,  (4) 

which is independent  o f  both e and 6. Such relations are always available, being in the nature of 
"atom" (or "basic element") conservation laws. 

2. Singular Solutions 

Consider the outer limit 

e+0,  6+0 ; 0 fixed, (S) 

where 0 stands for all of the variables (dependent and independent) in (1) and (4). The first 
equation reduces to 

�9 x ~ 0 (6) C x C F = 

and the second is unchanged. 
The only non-trivial solution of (6) is 

c v = O ,  c x # 0  in D x ,  (7a) 

cF # 0 ,  c x = 0 in D F , 

where D x and D v are non-overlapping domains which together must make up the whole of D. 
Evidently Dx and DF will be separated by a surface S which has oxidant on one side of it (say 
"outside") and fuel on the other (say "inside"). Continuity ofc  a (or 7a) will make it necessary for 
c x ~ 0 as the position vector x --+ x s (value of x on S) from within D x while c v ~ 0 as x --+ x s 

from within D v. 

It now follows from (4), etc. that 

V ' { p u c a - p ~ V c a }  = 0, c~ = X, F ,  (7b) 

with boundary value data given on the boundary 0D a of D a; such data must include the prescrip- 
tion, ca ~ 0 as x ~ Xs, but will otherwise be as specified on that portion of 0D which bounds D a. 
Clearly the problems for ca in D a will be properly posed, provided the location (geometry) of S 
is known. Solutions for c= in D a will have continuous first and second derivatives but it is clear 
from (7) that the first normal derivative of (say) c x will change discontinuously on crossing S 
from Dx into DF, with a similar behaviour of c v on crossing S in the other direction. A condition 
linking solutions across S will suffice to determine its location and such a condition is derivable 
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from integration of (4) across S along any normal co-ordinate direction. If the co-ordinate n 
is positive outside S and negative inside it, it readily follows from continuity of the dependent 
variables that 

0 
~ ~x(nl 0) = - ?~ ~(nT 0) (8) 

and this is the required condition. It has the interesting physical interpretation of stoichiometric 
rates of diffusion of fuel and oxidant into the "flame sheet" S [ 13]. 

If e~ is specified to be positive on all parts of 0D~ other than S (where it is zero) the maximum 
principle for linear elliptic differential equations [14] can be used to demonstrate that e: will be 
positive and will have no maxima or minima within D~ (observe that there is no term in c~ in 
(7b) since V.pu  vanishes by reason of conservation of mass), In such circumstances it must 
always be possible to find an S within D. If it is the normal gradients ofc~ which are specified on 
those parts of0D a other than S, then there is no a priori guarantee that condition (8) can be met 
with a positive c a in D~ ; in such cases any S defined by (8) would not be within D and the 
solutions would not be physically acceptable (they correspond to the case of too small an 
injection rate through a solid surface, for example). 

We have now established sufficient information about the limiting solution to recognize 
that it is singular on S insofar as the second normal derivatives of e~ (or 7~) become unbounded 
there. Thus the double limit of vanishing e and 6 is properly identifiable as an outer limit and 
the solutions (7) should be re-interpreted as outer estimates of c a to O(1) in the limit as both e 
and 6, separately, approach zero. The necessity to, first, correct for the non-uniformities at S 
and, second, to find the first significant outer estimate of Cx within D F and CF within Dx, for they 
are not truly zero there being, rather, o(1) so far as is known at present, means that it is conve- 
nient to deal in terms of an orthogonal co-ordinate system with co-ordinates normal (i.e. n) 
and tangential (i.e. s and t) to S. In such a system S is defined to be the surface on which n is 
zero (as in (8)). 

It must also be observed that (4) has a solution in D which it is now convenient to write in the 
form 

7 x -  7F = f f  (/~/, S, t).  (9) 

It can be presumed that f f  is calculable since specification of data for Cx and eF separately 
on 0D obviously implies that data for ? x - ? F  is likewise given on this surface. It must not be 
presumed that Z (n, s, t) necessarily represents the solution of(7) in Dx and DF. This can only be 
strictly so if Cx vanishes exactly on the part of ~DF which coincides with OD, with a similar 
condition on CF and #Dx. It will however emerge that this presumption about the general form 
of Z is implicit in the solutions which are adopted below, at least to a sufficient order of accu- 
racy. To the extent that ~ represents a solution of (4) in the domain D it must be independent 
of ~ and 6, be 0 (1), and have continuous derivatives up to and including the second ; we infer 
that Z must certainly possess a Taylor series in the regions D x and DF adjacent to S. 

Finally in this section it is observed that (1) in terms of the orthogonal n, s, t system has the 
form 

h,,hshtkOn\ h,, O n / +  c~s\ h~ O s / +  & ~ _ g t J J  o . t . j =  ( 

-(p/r ~=X, V, (10) 

where o.t. stands for other terms which involve only first derivatives of 7~ and which are not of 
any direct concern for present purposes. The quantities h i (i = s, n, t) are scale factors which are 
in general, functions of n, s and t ; the question of their order of magnitude will be raised in 
appropriate parts of the analysis which follows. 
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3. Solutions for ~ = 0, 6 ~ 0 

Making e zero in (1) (or 10) gives 

. ,  _ cF) .6 (11)  Cx CF --  ( 1 - C x -  

while (9) gives the necessary second relation to find Cx and CF. Flames with structures consistent 
with (11) are called equilibrium-broadened flames. Although (9) and (11) together may be taken 
to represent the complete solution, at least to the extent that simple substitution from (9) into 
(11) gives an algebraic equation for % it is nevertheless much more revealing to define outer and 
inner series, respectively, as follows (N.B. ~ =X,  F only): 

f(e~ ) (6), n > 0 
G(n, s, t: ~, 6)~- c,(n, s, t: O, 6) ~ Z I c(2)(n, s, t ) ,  (12) 

m =l  < o 

w h e r e  a l l  din)in t )areO(1)inlnl>Oandf( ,~+n/f (e ,~)  ' (re+l) r e, ~ , S, Je ,  ge, /g~, are o(1), similar series hold 
for 7~ (replace c by 7): 

G(n, s, t:0, b ) ~  ~ e(e"~)(6)~e~)(N~, s, t) ,  (13a) 
m=l 

Ne = n/6 b~ , b e < 0 ,  (13b) 

where all cg(~)(Ne, s, t) are O (1) when the stretched normal variable N e is O (1), and F(~'~ + 1)/F(~'~) 
is o(1); similar series hold for 7~ (replace cg by F when c is replaced by 7). From the work of 
section 2 it is clear that 

f(~(6) 1 - ( 1 )  = - -  g e z  (6 ) ,  (14) 

while all other (') (") fe~ (6), ge~ (6) and Fe('~) (6) must be o(1). 
Substituting (12) into (9) and (11), and making 6~ 0 with n, s, t fixed shows, again from section 

2, that 

~ / - / ( n )  - 7 ~ P U ( -  n) : g ( n ,  s, t ) ,  (15a) 

where H (n) is the unit step function (= 1, n > 0; = 0, n < 0) : it is inferred that 

~(]nl  ~ 0 ,  s, t ) ~ O .  (15b) 

The inner series may now be supposed to have first significant gauge functions which are as 
follows ; 

F(1) 6~ F(1) (16) eX = = - -eF  , a e > 0 .  

Substituting (16) into (11), and making 65 0 with Ne, s, t fixed, shows that the only non-trivial 
value for ae is 

a e ---- A/(VX+VF)< 1/2. (17) 

It follows that 

~(~)~• 1 = (Vx w r.)v~ ( v ~ ' ~  ~(~)~ (18) eX 't~ eF = VVF * eF I " v r X a e X I  

The exact solution (9) yields 

r(1) r(1) 6 - a ~ t N  6 be t) 6 b e - a e ~ n ( O  , S, t ) N e + . .  (19) e X - - - - e F  J- "'" = ~ e , S, = . , 

where the dots represent higher order terms in the asymptotic and Taylor expansions, and ~ .  
stands for O~----~/On. 

Evidently 

be  ~- ae  (20) 

r(1) c(1) ~n(O, S, t)Ne (21) eX --eF = 
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The diffusion flame as a singular perturbation problem 183 

The first inner problem, to find lec ~r(1), is now seen to be simpler than the original problem 
posed by (9) and (11). Combining (21) with (18) shows, for example, that 

,, 1/17 F'(1)]Vx r~(1) (22) ~x , ,x-ex ,  {VFI/VFUeX--J,(0, S, t)N~]} ~ = 1, 

which gives Ne as a function of F ~  ~ at once ; the "inverse" inner problem is thus easily solved. 
Asymptotic (i.e. IN~1 ~ oo) forms for F(e~ are also readily available from (22) ; thus 

C{X)ex ~ ~,(O, s, t)N~ + (vv Wv)- l {vx Wx ~,(O, s, t)Nr -~x/*~ + ..., Ne--+ oo , (23) 

rtl) , (24) eX ~ ( vxWx)  - 1  { - -VF  WF~n(0 ,  S, t) Ne}-VF/VX-~ . . . .  Ne-+ - -o0  

~'(~) in D x, since (23) shows that the first term in ,~or(l) Evidently ~,a~"r(l)-eX matches with ~eX ~ --eX 
(N~, s, t) as (5+ 0, with n (>0) fixed, is equal to Y,(0,  s, t) N~(5 "" (because of (i3b) and (17)), while 
the first term of the outer series for 7x in D x as (55 0, with N ~(> 0), s, t, fixed, is equal to ~,~,(0, 
s, t) Ne c5 b~ ; these two quantities are the same by reason of (20). It is interesting to note that 
matching has arisen naturally from the assumed nature of the outer and inner series, and has 
not had to be imposed. This is because the matched asymptotic expansion method is here 
being used to solve algebraic equations, rather than the differential equations which are more 
usually met with. Examining (24) in the light of matching requirements [123 makes it apparent 
that 

g ~  (6) = (5*/~x, (25) 

but it is even more readily apparent from (11), and the fact that CF is O(1) in D v, that the gauge 
function ~(~) YeX must behave as in (25). This is another example of the automatic nature of the 
matching in this particular algebraic problem. The form of the function YeX "(~) in D F will also 
follow readily from (11), with ~eV"(~) found from (15a) (n < 0). Evidently the whole first-significant 
behaviour Of Cx in D follows from such considerations, and the same will be true for c v. 

On the presumption that all of the scale factors h~ (i = s, n, t) and their first derivatives are 
O (1) as (5+ 0, it can be seen that the left-hand side terms in (10) are O (e(5 -"~ in the inner region. 
This follows from the fact that the double n-derivatives are O ((5 ~), while all other terms there 
are O (1), by hypothesis. It follows that (11) is a valid approximation to (10), when both ~l 0 
and (5; 0, only if e (5-1-,o is o(1). If this condition is met then a uniformly valid approximation 
to the concentration field has been found without having to restore the highest-derivative 
terms in the differential equation, as one usually expects to have to do in a singular perturbation 
problem. 

Under conditions which make the results of this section valid it can be seen that c x and CF are 
affected by flame geometry only through the intervention of the solution ~ (n, s, t). 

4. Solutions for ~ ~ O, 6 = 0 

Putting (5 equal to zero in (10) leads to the equation 

J P@ ~ ( h ~ h t @ ~ ' ] + o . t . } =  - (p / z )  c~Xc~F, c~=X,F (26) 
g t h ,  hshtOn~ hn On/ J 

where o.t. now stands for the "other terms" mentioned below (10 augmented by the two 
second derivatives in s and t. A flame whose structure is determined by (26) is said to be reaction- 
broadened. Just as in the previous section, where e was made to equal zero with (55 0, outer and 
inner series can be defined. With the difference that the approximation (see (12)) now reads 

c~(n, s, t: ~, (5)~ c~(n, s, t:g, 0), 

the series defined in (12) and (13) can be used in the present case with the modifications that all 
quantities which carry a subscript e in section 2 shall here have e replaced by r and that the 
parameter e shall replace (5. Then all of the results, remarks and hypotheses from (12) through 
to (16) apply otherwise unchanged. In particular the O(1) outer solution (see (14), (15)) is exactly 
the same, since ~- (n, s, t) must be the same in both situations. 
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However a~ will not be given by (17); it must be found from (26), as follows. Let it be assumed 
that the scale factors hg (i = n, s, t) together with their derivatives, are all O (1) quantities ; then 
(26) in the inner region (where the normal co-ordinate Nr is equal to n/e b") has the form 

~2 
Bl+ar-2br[ O~/b,2~ I'ra(l) J r  /'(.,~_ (1)  ~ .  ,P~/" , , s  ~ . . . .  (P/Z)s s ~('x + ~) (~x 1) +...)~x t '~' ~F . . . .  )*~, (27) 

where the dots represent higher order terms. The quantities in ( )s are to be given their values 
on the sheet S, where n is zero, and it is important to note the implication that such quantities 
must be functions of s and t alone. 

Now results (19), (20) and (21) must also apply here (with subscript e replaced by subscript r 
and 6 by ~), so that the only non-trivial scalings of n and c~ (i.e. which do not either reduce (27) 
to an outer-region form like (6), or give an unmatchable solution for F~ ), namely F~ ) propor- 
tional to N~ plus a constant) must be 

ar = b~ = 1/(1 +Vx+Vv) < 1/3. (28) 

The equation satisfied by r(a) for example, is therefore a r X  

5~ A F~ 1) = -,xrti)~x ~-~xSr~l)-~',w,t~ s, t)N~} ~ , (29a) 
CI~ r 

where 
5 ~ = (z~/h2)s/(Vx Wx) TM (Vv Wv) v~ , (29b) 

and F ~  ) has been eliminated by using the appropriately modified version of (21). Observe that 
5 ~ is a function ofs and t only.Any solution of(29) must match properly with the outer solutions 
for c x (or 7x), which are evidently 

Cx s, t )+o(1) ,  

~o (1 ) ,  n < 0 .  

It is best to deal with normal derivatives of Cx, rather than c x itself, whence it is readily shown 
that matching leads to the requirements 

0 
- -  F~0 (Nr ~ o% s, t) ~ f t .  (0, s, t ) ,  (30a) 
0N, 

- -  r~x  ~(N, ~ - ~ ,  s, 0 -~  0 .  (30b) 
0ur 

Now any physically realistic solution must maintain both ,x~) and r~l) as positive non-zero l rX ~rF 
quantities; it follows that the right-hand side of (29a) must always be positive and therefore 

~r(1)  that the N,-derivative o! l , x  must be a monotone increasing function whose value lies between 
zero and ~n(0, s, t) (>0). It is also inferred that -~xr(1) (N--} - ~ ,  s, t)-~0, otherwise (30b) could 
not be satisfied (see (29a), etc.); in fact F ~  ~ must be o (IN, r- v~/~• as N, -~ - ~ in order to satisfy 
(30b). Similarly -~xrm-fin (0, s, t)N~ must be o(IN, l - " / ~ )  as S~ ~ ~ in order to maintain boun- 
dedness of OF~/~N,. It is convenient to define new variables 

A t ,  o / -  2a~ t'(a) (31a) O(M) = {g.(0,  - , x ,  

M = Y,(0, s, t)X~ {W,(0, s, t)5~} -2or , (31b) 

in terms of which (29) and (30) become 

G"= G ~ x ( G - M ) ~ ;  G'(M~oo)--* 1, G ' ( M ~  - o o ) ~ 0 .  (32) 

(A prime on G denotes differentiation with respect to M). Evidently -~xr~a) depends only para- 
metrically on s and t, but in a quite complicated way, via the functions f t , (0,  s, t) and ~qa. 
It is clear that all geometries with the assumed scale-factor behaviour (see paragraph containing 
(27)) are catered for. As M ~ - oo (32) takes the form 
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= ( -  M) TM c TM , (33) 

the r ight-hand side being in error  only by a factor  which is 1 + o ( IM[ -  1 - ~F/~x). This is an equa-  
t ion of the E m d e n - F o w l e r  type, for which there is a unique asympto t ic  solut ion [15], namely  

G ~ { ( V F + 2 ) ( V F + V x +  I)(V x -  l ) - 2 } i / ( ' x ' - 1 ) ( - - M )  -(~+2)/(~• , (34) 

if v x > 1 and v v > 1. (Observe that  G, and w(1) hence l r x ,  obeys  the order  restriction deduced above  
equat ions (31).) Match ing  therefore shows that  the gauge factor  g~)(e) is given by 

g~l)(~:) = (~l/(".'x- 1),  V x > 1 ; (35)  

(compare  with g ~ ( 6 )  in (25) and observe that  match ing  is essential here), and a condi t ion on 
(i) t) is also derivable.  It is clear f rom (35) that  ,.(I) (n < 0, s, t) must  satisfy a the form of C~x (n]" 0, s, WrX 

version of (26) (with e = X )  for which all left-hand side te rms of that  equa t ion  are retained,  
while the r ight -hand side is p ropor t iona l  to ~rx "~1)~" kV_ @ (n, s, t)] ~ (recall that  ~ < 0 in n < 0). 
This is a very difficult equat ion  to solve and one m a y  have to be content  with the informat ion  
in (35), which at least gives the order  of  magni tude  of the oxidant  concent ra t ion  in D v. 

It m a y  well happen  that  Vx is unity, in which case (33) is s imply a linear second order  equa t ion  ; 
in such a case it can be shown that  the desired solut ion for G has an asympto t ic  form 

G ~ Cons tan t  ( -  M ) - ~ / 4  exp { - ( -  M) 1+ vF/2/(1 d- VF/2)} (36) 

as M - ~  -- o% v x = 1, VF > 1. When  Vx = 1 the left-hand side of  (26) (e = X )  always vanishes in the 
outer  limit as e$ 0, no mat te r  how Cx is scaled. The  conclusion that  ex is zero in the outer  region 
D F (n < 0) is suppor ted  by the evidence of (36) if zero is taken to mean  exponent ia l ly  small  in 
these circumstances.  

Returning  to the inner region it is noted  that,  the left-hand side of (10) is O (~1-,Q where a~ is 
given by (28). The  first te rm on the r ight -hand side of (10) is also of this order  and  so it is valid 
to use (26) in this region if 6 e -  1 +,r is O(1). C o m p a r i n g  (17) and (28), this is equivalent  to finding 
that  6 e-~/(1 +,,) is o(1); since it must  be true that  61 +""e-  1 is o(1) if the latter is true, it can be 
seen at once that  the cri terion for d ropp ing  the te rm in 6 in the present  case is reciprocal  to the 
cri terion for omit t ing terms in e in the previous  case (see section 3). It  follows that  the final t e rm 
in (10) must  be retained in the inner region when 6 e - ~ + ~  or, what  is equivalent,  e 6 - 1 - , . ,  is 
O(1). In such c i rcumstances  a posit ive cons tant  mus t  be subt rac ted  f rom the r ight -hand side 
of (29a) to give the new equat ion  for -~xC(1), that  cons tan t  being related to the hypothes ised  
propor t iona l i ty  between 6 and ~ - " " .  Since ~2--rXF(1)/"~/t~N/'2' r must  app roach  zero as [N~I-> c~, so as 
to preserve the boundedness  of #F~x)/ON,, it follows tha t  1~x"(1) will behave in a pseudo-equi-  
l ibr ium way (compare  (22)) near  the edges of  the inner region and therefore (from match ing  
requirements)  also in the outer  wings of  the f lame on either side of  the surface S. 
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